If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x+93=x
We move all terms to the left:
x^2-20x+93-(x)=0
We add all the numbers together, and all the variables
x^2-21x+93=0
a = 1; b = -21; c = +93;
Δ = b2-4ac
Δ = -212-4·1·93
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{69}}{2*1}=\frac{21-\sqrt{69}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{69}}{2*1}=\frac{21+\sqrt{69}}{2} $
| 7.50c+100=550 | | 22x-2=7x+8 | | 2x+7=x+0 | | 9(2x+5)+23x=-8x+3(5x-2)+3+6X | | -7x^2=252 | | 42=3x+9/2 | | -8x+21=-4x+9 | | c−8=16 | | x/12+4=7 | | 5x=4(x+8) | | -x+18=3x+38 | | 125=k∙16 | | x-9(2x+5)+23x=-8x+3(5x-2)+3+6 | | 9x+5=26x | | 50x+3050x-32=62(50x+12) | | 3l=39 | | 9r=45 | | f−23=14 | | y=8(1-0.15)1 | | 1+3/2x=13 | | 64n^2+11=92 | | t-4.5=35.9 | | 2.5x-x=1061 | | 7b-8=13 | | 2.5x-x)=1061 | | 4x+8=8x+5-4x+3 | | r+2.5=11.5 | | 5x+5=7x−6/2 | | -9=c-6/3 | | -1x=2.6 | | 9y=40+4y | | 6x2+15x=0 |